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Abstract: Analysis of urban dynamics is a pivotal step towards understanding landscape changes and
developing scientifically sound urban management strategies. Delineating the patterns and processes
shaping the evolution of urban regions is an essential part of this step. Utilizing remote-sensing
techniques and Geographic Information System (GIS) tools, we performed an integrated analysis on
urban expansion in Srinagar city and surrounding areas from 1999 to 2017 at multiple scales in order
to assist urban planning initiatives. To capture various spatial indicators of expansion, we analysed
(i) land use/land cover (LULC) changes, (ii) rate and intensity of changes to built-up areas, (iii) spatial
differentiation in landscape metrics (at 500, 1000 and 2000 m cell-size), and (iv) growth type of the
urban expansion. Global Moran’s I statistics and local indicators of spatial association (LISA) were
also employed to identify hotspots of change in landscape structure. Our methodology utilizes a range
of geovisualization tools which are capable of appropriately addressing various elements required
for strategic planning in growing cities. The results highlight aggregation and homogenization
of the urban core as well as irregularity and fragmentation in its periphery. A combination of
spatial metrics and growth type analysis supports the supposition that there is a continuum in the
diffusion-coalescence process. This allows us to extend our understanding of urban growth theory
and to report deviations from accepted stages of growth. As our results show, each dominating growth
phase of the city—both diffusion (1999) and coalescence (2009 and 2017)—is interspersed with features
from the other type. An improved understanding of spatial differentiation and the identification of
hotspots can serve to make urban planning more tailored to such local conditions. An important insight
derived from the results is the applicability of remote-sensing data in urban planning measures and
the usefulness of freely available medium resolution data in gaining a comprehensive understanding
of the evolution of cities.
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1. Introduction

Globally, urban dynamics and their associated impacts have led to changes in the basic structure
and function of ecosystems [1,2]. Urban transformations are multidimensional changes that are both
dynamic and non-linear [3]. These changes are known to have transformed the immediate urban
environment and continuously lead to a transition in other ecosystems around the world. Thus,
cities have turned into the nodal points of global change. However, in recent times, the majority of
urban growth has shifted from the developed to the developing world [4]. Nations experiencing rapid
economic transformation, such as India and China, are the hotspots of this new urban growth [5,6].
In India in particular, existing population pressure coupled with other factors, such as governance
priorities, socio-economic conditions, and the partial enforcement of land-use policy, has led to
an extensive unplanned expansion of urban areas. India, home to 1 in 10 of the world’s urban
residents [7], currently possesses huge potential to shape the urban sustainability narrative of the
world. Unplanned and unmonitored urban growth presents a major hindrance to achieving sustainable
development, as the tools to steer, monitor and measure its impacts are lacking [8]. With increasing
demographic pressure and the complexity of urban systems, urban local governance bodies require tools
that are easily adaptable and integrated into the existing framework of implementing policies. Applied
remote sensing in conjunction with a Geographic Information System (GIS) provides a much needed
leap in technology to identify the patterns and processes of expansion, and to record and map them
for planning purposes. Such information, when combined with demographic and economics-based
measures, has the potential to provide policy makers with more scientific decision-making capacity.

The sheer complexity and the dynamic trajectories of individual urban ecosystems are a major
factor in bringing uncertainty into management strategies [9]. Most prominently from a spatial
perspective, high interconnectivity, heterogeneity, and the transition probability of various spatial units
contribute to this complexity [10]. A result of this increased urban complexity is its ability to influence
ecological processes, ecosystem services, and the availability of natural resources for sustainable use [11].
Urban form, or morphology, a result of the path-dependent urbanization process, in turn provides
a basis to understand the consequences of ecological, socio-economic, governance, and planning
processes which ultimately shape the urban region. Due to efforts to decipher urban complexity
and morphology, the growth of urban research has gained momentum in the past decades [12,13].
Understanding spatial patterns beyond the one-dimensional measure of land-use change has been
a major focus of research to improve urban planning inputs [14]. Remote sensing and GIS techniques
have been found to contribute very effectively towards capturing the spatial and temporal heterogeneity
of land-use and land-cover (LULC) patterns in and around urban areas [15].

The ways in which the mosaic of LULC types are characterized to determine attributes such as
their complexity, configuration, composition, shape, and irregularity have been studied widely in order
to shed light on urban landscape dynamics [16–18]. Spatial metrics or landscape metrics, originating
from the field of landscape ecology, are important and reliable tools utilized in this regard [19,20].
Most of the studies have focused on the analysis of multi-temporal sprawl patterns, providing measures
of overall landscape metrics for a city or directional sections of a city and its surrounding areas [21–24].
However, this leads to a generalization of variations within the urban landscape and thus requires more
distinct measurements which can capture spatial variations [18,25], a step with practical applicability
in urban planning. Variations in landscape metrics are a spatially conditioned process, i.e., values in
one location are related to nearby values, depending on the scale of observation. Thus, consideration
of scale effects is important because they are more prominent in a heterogeneous landscape like
urban areas [26]. To a great extent, landscape transformation processes are affected by processes in
other locations, and thus the use of tools to measure spatial relationships is equally important [25].
Studying spatial relationships between the elements of a landscape arranged in different sizes and
shapes provides the opportunity to delineate the patterns and processes shaping urban ecosystems.
However, landscape metrics on their own do not provide all the necessary information on landscape
structure, as they do not address measures of rate and intensity. Measuring changes over time in
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the urban area is an important part of understanding periods of growth, push-backs and stagnation
phases [15,27]. Growth type assessment is an important step in identifying the spatial heterogeneity
present in the evolution of an urban region, capable of depicting the processes through which urban
growth has been shaped. Most studies refer to three growth type categories—infilling, outlying,
and edge-expansion [28–30]. Growth types develop as a result of specific growth processes, and their
analysis is a valuable contribution to urban planning and management. It allows a spatial identification
of regions experiencing process-driven urban expansion and thus holds the key to countering the
ensuing ecological consequences [31].

The rapid rate of urbanization, especially in the developing world, creates a challenging
environment for urban planning and management. Urban areas located in valleys or basins are
additionally subject to topographic constraints. The purpose of this study is to shed light on the urban
dynamics of the largest Indian urban settlement in the Himalaya, Srinagar, and to emphasise the role of
various mapping and monitoring tools and techniques used to delineate possible implications for future
land-use planning. Another important contribution of this study is to address the scale-dependent
interplay of spatial metrics and to develop a deeper understanding of the urban growth theory
proposed by Dietzel et al., (2005) [32]. Previous studies have affirmed this alternating pattern of
growth between diffusion and coalescence [33–35] while others have reported a transition phase from
diffusion to coalescence [36,37]. However, literature on mountain cities remains fairly unexplored.
Previous studies on cities like Srinagar have focused on urban sprawl [38] and land transformations [39],
highlighting the unplanned nature of the city expansion and the resulting disproportionate distributions
of resources. Patterns indicate a rapid increase in built-up areas and existing spatial variations in
growth dominated by the edge-expansion category. However, a major gap in knowledge results from
a lack of understanding about the landscape characteristics of built-up areas. Landscape characteristics
measured through spatial indicators like landscape metrics provide detailed and varied information
on the geometric patterns of built-up areas and can significantly improve our understanding of
pattern-based processes such as fragmentation and irregularity. Beyond this, it is necessary to gain
a comprehensive understanding of different indicators of urban growth at different spatio-temporal
levels. To fill the existing knowledge gaps and improve the methodological approach in assessing
urban dynamics, our objectives are to: (1) quantify and characterize the urban growth of the city and
its environs; (2) understand the variations in the evolution of this urbanization using spatial metrics at
different spatiotemporal scales and identify specific clusters of urban growth; and (3) determine the
typology of urban growth in different parts of the city and its surroundings.

2. Materials and Methods

2.1. Study Area

Srinagar, the only million-plus city and the largest urban settlement in the Himalayan mountain
chain, is located in the Kashmir valley of Northern India. It represents an active region of urban
growth and is the centre of political, social, and economic exchange of the former state of Jammu and
Kashmir (J & K) (now a central administered region). Srinagar city covers an area of 245 km2 and is
divided into 69 administrative wards. According to the census in 2011, the city had a population of
1,180,570 inhabitants. To capture both regional and city-level urbanization, the study area encompasses
an area of 1886 km2 (Figure 1) and includes Srinagar city and its surrounding areas at a distance of
25 km from the centre.
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Figure 1. Location of the study area Srinagar, India: (a) geographical location of study area in Jammu
and Kashmir; (b) administrative wards of Srinagar city (see supplementary Table S1 for ward names);
(c) satellite image of the study area.

At an average altitude of 1580 m, the physio-geographic layout of the area reflects its spatial
heterogeneity, with vast agricultural fields in the south and western part as well as high elevation
mountains in the north-eastern and eastern direction. These geographic features have significantly
shaped the expansion of the settlement, leading to vast urban growth towards the plains and more
restricted growth towards the mountains. The river Jhelum and Dal lake both play an important role
as tourist recreation sites, ecosystem service providers and income generators for the local population.
The city is also known for its diverse parks and green spaces, frequently accessed by residents and
tourists. Being exposed to the highest (very severe) intensity seismic zone, the city and its surroundings
have a considerable vulnerability to earthquakes, while flooding is another natural hazard.

2.2. Data Processing and Land-Use and Land-Cover (LULC) Classification

Urban dynamics in the study area were analysed using multi-spectral satellite images covering
almost two decades at three points in time, i.e., 1999, 2009 and 2017. The images were obtained
from Landsat 5 (TM) and 8 (OLI/TIRS) satellites provided by USGS (United States Geological Survey)
(http://earthexplorer.usgs.gov/) at a spatial resolution of 30 m. Table S2 (see supplementary data)
provides further details on the acquisition dates, sensors and path/row of the images obtained.

Prior to generating LULC maps, the images were processed for atmospheric correction using
the fast line-of-sight atmospheric analysis of hypercubes (FLAASH) algorithm embedded in the
Environment for Visualizing Images (ENVI) software v.4.7 in order to minimize the atmospheric
effects. To classify the images, a supervised classification technique was applied using the maximum
likelihood classifier (MLC), which is based on the similarity of spectral signatures. However, owing to
the high spatial heterogeneity that is inherent to urban areas, the spatial resolution of Landsat

http://earthexplorer.usgs.gov/
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images is not sufficient for all processes of spatial analysis, meaning that spectral signatures may
be misclassified. For this reason, Google Earth images were used additionally to complement the
training sample generation (Figure 2a). Each satellite image was classified into fourteen LULC classes,
i.e., built-up dense, built-up sparse, fallow land, agriculture, forest, hilly vegetation, open land,
bare mountain, barren, marshy vegetation, wetland, sand, river, and cloud (see supplementary data
Table S3). The established nature of certain classes, such as bare mountain, hilly vegetation, cloud and
sand, helped in classification as although not part of the main focus area of study they were essential to
include as they covered a significant part of the overall study area. As the main focus of this study was
on the built-up areas, two different classes were extracted that were based on the spectral differences
and established LULC features in the urban region (see supplementary data Table S3).

The study area was divided into two sections: the city area (CA) enclosing the administrative area
of the city, and the outer zone (OZ), the area surrounding the city from its boundary to a distance of 25 km
from its centre (Figure 2b). Post-classification refinement was undertaken to remove singular LULC
pixels and to reduce misclassification errors. Singular pixels were corrected using majority analysis
with a 5 × 5 moving window. Owing to spectral similarity with built-up categories, bare mountainous
slopes were carefully reclassified. Ancillary information such as the DEM (digital elevation model)
obtained from ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer) satellite
sensors for the year 2011 was utilized to assist this process, and also to differentiate hilly vegetation
from other vegetation classes based on elevation.

The accuracy assessment was carried out using bootstrapping technique that remove any human
bias in the selection of sample pixels. A stratified random sampling technique was employed to
obtain testing pixels for each class, collected using probability proportional to size (PPS) sampling (see
supplementary data Table S4 for the number of reference sites associated with each class). Using the
bootstrapping technique, 800 randomly generated testing pixels were subjected to 100 iterations
without replacement. An R algorithm was employed to calculate user’s accuracy (UA), producer’s
accuracy (PA), overall accuracy (OA) and kappa (K) statistics generated by the error matrix [40].
The mean value of all four parameters obtained from 100 iterations was considered as the final measure
of the accuracy assessment.

2.3. Spatial Pattern-Process Analysis

To understand the complex relationship between landscape patterns and co-existing change
processes driven by the patterns themselves, we followed three paths of spatial analysis (Figure 2c):
(1) built-up change analysis, (2) landscape metrics analysis, and (3) growth pattern analysis. In the
built-up change analysis, we quantified the urban expansion rate and intensity of urban growth,
allowing simpler conclusions on the absolute change of the built-up area. In the landscape metrics
analysis, we computed landscape metrics at differential spatiotemporal scales, i.e., 500 × 500 m,
1000 × 1000 m, and 2000 × 2000 m for the years 1999, 2009 and 2017 in order to determine the
composition and configuration of the built-up area. Since the main focus in this part was on general
trends of urban dynamics with respect to landscape metrics, the two classes dense and sparse built-up
are combined to form a single built-up class. Thus, for each cell of the respective size, we computed
the selected landscape metrics of this combined built-up class and analysed it further. As landscape
metrics are known to be spatially dependent and to change across spatial resolutions, we calculated all
the values at a spatial resolution of 30 m. With respect to this resolution, the selected cell sizes captured
variation in the geometric values of the landscape metrics and allowed a determination of scale which
captures the heterogeneity in the study area.
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Figure 2. Methodological framework showing the major steps involved in the study: (a) data
pre-processing and land-use and land-cover (LULC) classification, (b) LULC analysis, and (c) spatial
pattern-process analysis.

In the growth type analysis, we identified three different urban growth types across the city
(infilling, edge-expansion and outlying). This integrated methodology helped us in capturing the
structural changes in built-up patterns and enabled us to utilize an innovative way of visualizing
localized information in different parts of the city. By focusing on more than one parameter of built-up
area change, this methodology makes it possible to carry out a comprehensive analysis of urban
dynamics, which is a key indicator for urban planners. Detailed analysis of spatial variation in
landscape metrics and growth type is an essential step towards visualizing urban dynamics at the
local level. The analytical inferences also contribute towards discussion of the phases of diffusion and
coalescence in the context of the urban growth theory proposed by Dietzel et al., 2005 [34].
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2.3.1. Measuring Expansion Rate and Intensity

To quantify the magnitude of urban expansion and understand spatial dynamics, two key
indices, the urban expansion rate (Uer) and urban expansion intensity (Uei), are computed [15,41,42].
Uer quantifies change in the built-up areas (combined built-up class) as a percentage of total urban
growth in the given interval (Equation (1)). This measure can provide direct evidence of demographic
pressure and/or governance implications for the land system and helps to evaluate a direct footprint of
urbanization [43]. Uei quantifies the change in built-up categories (combined built-up class) between
different given points in time as a percentage of the total area in the selected land unit (Equation (2)).
To visualize and comprehend urban dynamics at high spatial resolution, the ward level, which is the
smallest administrative unit in India, was taken as the relevant land unit to compute Uer and Uei.

For each ward, respective indices were calculated using the following formulae:

Uer =
Bt+i − Bi

Bi
×

1
t
× 100 (1)

Uei =
∆Bi

TA
×

1
t
× 100 (2)

where, Bt+i and Bi is the built-up area at time t + i and i respectively, and t is the interval between given
points in time (in years). ∆Bi denotes the change in built-up area at time i, and TA is the total area of
the land unit.

2.3.2. Multi-Scale Landscape Metrics Analysis

The analysis of landscape composition (a measure of the quantity - abundance, diversity,
patch density etc. of a particular class without considering its spatial character) and configuration
(a measure of the spatial character—shape complexity, nearest neighbour distance, arrangement etc.—of
a particular class) is an important aspect when studying urban dynamics. Spatial heterogeneity of the
landscape plays an important role in transition phases of ecological features [44]. Landscape metrics
help to characterize the morphological regularities of a landscape by effectively characterizing the
geometrical variation [45]. However, spatial heterogeneity at different spatiotemporal scales provides
a higher or lower aggregation of information about a landscape due to the scale-dependent nature of
cell-sizes [26]. Selected spatial metrics were analysed on three different scales, namely, 500 × 500 m,
1000 × 1000 m, and 2000 × 2000 m. Unlike other studies, the selection of these sizes makes it possible
to test intermediate cell sizes [18,25].

To capture the spatial heterogeneity and derive the inner construct of feature characteristics,
four spatial metrics were selected based on the objectives of the study and literature review.
Many previous studies have proposed and selected a similar set of spatial metrics capable of measuring
the dynamics of urban growth [46,47]. We chose a core set of four class-level metrics, namely,
largest patch index (LPI), largest shape index (LSI), area-weighted mean patch fractal dimension
(AWMPFD), and aggregation index (AI) (Table 1) based on their ability to highlight the composition and
configuration of the landscape studied. As most studies lack spatial differentiation of landscape metrics,
we have also analysed three commonly used landscape metrics, namely, number of patches (NP),
Euclidean nearest-neighbour distance mean (ENNMN) [48] and patch density (PD). These single-value
metrics for the whole study area would enable comparison with other studies and discussion of urban
growth theory in general.
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Table 1. List and definition of applied spatial metrics in the study, (after McGarigal and Marks, 1995;
McGarigal, 2015) [49,50].

Metrics Formula Range Description and Significance

Largest Patch
Index (LPI)

LPI =
maxn

j=1(aij)
A (100)

aij = area (m2) of largest patch ij
A = total landscape area (m2).

0 < LPI ≤ 100

The area (m2) of the largest patch of the
corresponding class divided by total

landscape area, multiplied by 100 (to convert
to a percentage). Percentage approaches 100

when the corresponding class occupies larger
continuous area.

Landscape
Shape Index

(LSI)

LSI =
0.25

∑m
k=1 eik
√A

eik = total length (m) of edge in landscape
between patch types

(classes) i and k; includes the entire
landscape boundary and

some or all background edge segments
involving class i.

A= total landscape area (m2).

LSI ≥ 1,
without limit

LSI equals 0.25 times the sum of the entire
landscape

boundary and all edge segments (m) within
the landscape boundary involving the

corresponding patch type, including some
or all of those bordering background,

divided by the
square root of the total landscape area (m2).

Higher value indicates higher irregularity in
the shape.

Area-Weighted
Mean Patch

Fractal
Dimension
(AWMPFD)

AWMPFD =
∑n

j=1

[(
2ln

(
0.25pij

)
lnaij

)][
aij∑n

j=1 aij

]
Pij = Perimeter (m) of patch ij

aij = area (m2) of patch ij

1 ≤AWMPFD
≤2

The sum, across all patches of the
corresponding patch type, of 2 times the

logarithm of patch perimeter (m) divided by
the logarithm of patch area (m2), multiplied
by the patch area (m2) divided by total class
area (sum of patch area for each patch of the

corresponding patch type); the raster formula
is adjusted to correct for the bias in perimeter.

Higher value indicates higher irregularity
and complexity.

Aggregation
Index (AI)

AI =
[∑m

i=1

(
gii

max→gii

)
Pi

]
(100)

AI =
[

gii
max→gii

]
(100)

gii = number of like adjacencies (joins)
between pixels of patch type (class) i

based on the single count method.
max-gii = maximum number of like
adjacencies (joins) between pixels of

patch type (class) i based on the
single-count method.

0 ≤ AI ≤ 100

The number of like adjacencies involving the
corresponding class, divided by the
maximum possible number of like

adjacencies involving the corresponding
class, which is achieved when the class is
maximally clumped into a single, compact

patch, multiplied by 100 (to convert to
a percentage).

Higher value indicates higher aggregation of
the class.

Number of
patches (NP)

NP = ni
NP is total number of patches

ni = number of patches in landscape of
type (class) i

NP ≥ 1, no
limit

The total number of patches of the
corresponding class or of the total landscape.
Higher number indicates addition of newer

corresponding patch.

Euclidian
nearest

neighbor mean
(ENNMN)

ENNMN =

∑n
j=1 hij

ni
hij = distance (m) from patch ij to nearest

neighboring patch of the sample type
(class), based on patch edge-to-edge

distance, computed from cell center to
cell center.

ENNMN > 0,
no limit

The sum of the distance (m) to the nearest
neighboring patch of the same type, based on
nearest edge-to-edge distance, for each patch
of the corresponding patch type, divided by

the number of patches of the same type.
Higher value indicates farther patch distance

of the corresponding class.

Patch density
(PD)

PD = N
A (10000)(100)

N = number of patches in the landscape.
A = total landscape area (m2)

PD > 0,
without limit

The number of patches in the landscape
divided by total landscape area, multiplied

by 10,000 and 100 (to convert to 100 hectares).
Higher value indicates increasing

heterogeneity of area.

LPI measures the dominance of urban patches and thus their composition. LSI, AWMPFD, and AI,
measure the configuration of this urban landscape by delineating the complexity, fragmentation,
and contiguity of urban patches [16,17]. To compute these metrics, FRAGSTATS, version 4.2 [49] was
used. Prior to this, FISHNET (grid) of different sizes were generated (for LPI, LSI, AWMPFD and AI)
in ArcGIS 10.7. Following this, batch clipping was performed to generate individual cells of specified
size from each classified image using the model maker. Each grid size, i.e., 500 m, 1000 m and 2000 m
generated 7717, 1974 and 518 individual grids, respectively, for each year. These grids were used in
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FRAGSTATS version 4.2 to compute the selected spatial metrics. The output was generated per grid
cell with a resultant metrics value for each specified cell size.

2.3.3. Growth Type Analysis

Analysis of urban growth types, wherein each new urban patch is categorized into one of
the recognized growth types, provides a deeper understanding of the landscape transformation
processes [30]. Forman (1995) [51] classified three distinct growth types: infilling, outlying and
edge-expansion. A quantitative method to extract such growth types was initiated by Wilson et al.,
2003 [30] followed by Liu et al., 2010 [36] and Xu et al., 2007 [35]. These spatial patterns of growth are
based on the urban expansion of the newer patch with respect to the older one. To extract this relation,
the landscape expansion index (LEI) was calculated [36]. First, we performed a change detection
analysis to identify old and new patches among the study years. The classes identified thus were
re-coded to form three new classes: old, new and non-built up. These classes were converted to
a polygon shapefile and used as input into the LEI tool box [36]. For each newly developed patch,
LEI is computed as a ratio of the length of common edge (lc) (old and new patch shares) to the total
perimeter of the new patch (lt) (Equation (3)). The value of each new patch lies between 0 and 100.

LEI =
lc
lt
× 100 (3)

Based on the LEI value(s), all the patches were classified into either of the three growth types
using simple heuristic rules:

(1) Infilling growth type: a new urban patch is surrounded by at least 50% of existing urban patches
i.e., 50 < LEI ≤ 100.

(2) Edge-expansion type: a new urban patch is surrounded by less than 50% of existing urban patches
i.e., 0 < LEI ≤ 50.

(3) Outlying growth type: a new urban patch is not surrounded by any existing urban patch i.e.,
LEI = 0

The defined growth types can also be related to the growth phases the city undergoes, in conjunction
with trends in various spatial metrics.

2.4. Geospatial Statistical Analysis

We investigated the spatial dependency of the selected spatial metrics using global and local
measures of autocorrelation. To understand the degree of spatial dependency of selected landscape
metrics at various scales over the study period, we used ESDA (exploratory spatial data analysis)
techniques, namely, global Moran’s I and local indicators of spatial association (LISA) analysis.
These techniques facilitate a deeper understanding of spatial distribution, especially the existence of
spatial clustering and outliers at different levels [52]. Both analyses were carried out using ArcGIS
10.7 software. When looking at the overall given area (“global”), global Moran’s I utilizes both feature
location and values simultaneously to evaluate how clustered or random the observed patterns of
urban growth are. Moran’s I index, Ig (Equation (4)), ranges between −1 and +1, and thus indicates
negative and positive spatial autocorrelation respectively, while a value of zero represents complete
spatial randomness.

Ig =
N Σi Σ jwi j(xi − µ)

(
x j − µ

)
(
Σi Σ jwi j

) ∑
i

(
x j − µ

)2 (4)

where wi j is the row-standardized contiguity matrix, xi and x j are the landscape metrics value at cell i
and j respectively, and µ is the average of landscape metrics value. N is the total number of grids in the
study area. However, providing a global indicator of autocorrelation (Ig) is not useful to highlight
the relationship between neighboring areas (different cells) or indeed any geographical relationship
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between cells, if any. LISA provides a measure of local spatial association by identifying spatial clusters
with high or low value of spatial metrics between neighboring cells by measuring the local Moran’s I
(Il) (Equation (5)).

Il =
x j − µ∑

i

(
x j − µ

)2

∑
j

wi j
(
x j − µ

)
(5)

We used the inverse distance method to define the spatial relationship between two cells, i.e.,
the value of a cell that is closer has a larger influence on the computation of the target cell value (Il)
than compared to cells which are farther away. The distances between cells were calculated using the
Euclidean distance, which is the straight-line distance between two cells. Through its consideration
of neighboring cell (“local”) features, LISA highlights hot and cold spots of change in spatial metrics
across the study area. Furthermore, to determine the changes in landscape metrics between two points
in time, we performed LISA analysis on the difference images of each metrics i.e., between 1999–2009
and 2009–2017. Spatial clusters were divided into the following spatial typologies: (i) high-high
clusters, indicating the presence of cells with a high level of change clustered together, (ii) low-low
values, indicating the presence of cells with a low level of change clustered together. Spatial outliers
were identified in two groups (i) high-low clusters, indicating presence of cells with high level of
change clustered with low level change cells (ii) low-high clusters, indicating the presence of cells with
a low level of change clustered with high-level change cells.

3. Results

3.1. Spatiotemporal LULC Changes

The significance of our analysis lies on the built-up class and the general spatio-temporal patterns
derived from them to perform further analysis. The mean OA and K values from 100 bootstrapped
iterations for LULC classification of the years 1999, 2009 and 2019 are 85% (K = 0.82), 90% (K = 0.88)
and 87% (K = 0.84), respectively (Table 2). More than 80% OA and K values in each of the years shows
good and reliable accuracy of our classified maps. Mean values of UA and PA are given in Table 2
for each class. Assessing class-wise UA and PA provides more insight in the classification accuracy
of individual classes [53]. Most of the LULC classes have more than 70% UA and PA in each of the
years indicating good classification accuracy as generally accepted. High and close UA and PA of both
built-up classes, which are difficult to achieve in a complex urban landscape affirm reliability of further
analysis, namely as prerequisite for landscape metrics computation. Only specific LULC classes owing
to highly similar spectral signatures, namely, open land, bare mountain, barren and sand have UA and
PA values less than 70% in one or more years.

To gain a comprehensive understanding of the LULC changes in and around Srinagar, especially
its built-up area, OZ and CA were analysed independently (Figure 3). By doing so, the magnitude
of urbanization was clearly observable in the main urban centre and its peri-urban area between
1999–2009 (T1) and 2009–2017 (T2). In OZ, its composition was more predictably dominated (due to
its rural characteristics) by agricultural land (22%) in 1999, followed by fallow land (20%). However,
decade-wise changes show a decrease of 0.05% and 4.8% in agricultural land from 2009 to 2017,
respectively, (Figure 4). Built-up areas occupied very little LULC as compared to the total OZ area.

In T2, despite the low coverage of built-up area in OZ, its percentage change shows a strong rise by
679% in dense built-up areas, whereas sparse built-up areas show an increase of just 11.6%. The forest
class, on the other hand, shows a decrease of 17.8%. Another class with substantial implications is
open land, which reduced by 85.6%.

CA shows more obvious trends associated with the intensive urbanization process in terms of
its magnitude, as it covers a much larger urban area compared to OZ. Built-up sparse remains the
dominant land use in the city, with 20.1% (1999), 24.9% (2009), and 24.8% (2017) coverage in respective
years (Figure 5). In T1, the city experienced an increase of 23.8%, while in T2 we measured a marginal
decrease of 0. 5%. The decrease in built-up sparse during this period is explained by a rapid increase
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in dense built-up, thus promoting the conversion from sparse to dense built-up. In T1, an increase of
20.81% is observed in dense built-up, whereas in T2 the increase is by 250.8%. This result indicates
the change in the densification process of T2. While growth in the northern extent is dominated by
residential built-up, the south-eastern part of the city experienced the advent of industries, both of
which utilized the available agricultural land in the area. Expansion into agricultural land is also
observed in areas adjoining the city boundary in the south. Agricultural land is reduced by 7.8% (T1)
and 27.5% (T2). Forest shows an increase (15.5%) in T1 followed by a substantial decrease (49%) in T2.
This development could be attributed to a shift in cultivation practices from farming to horticulture
activities, such as the production of apples, orchids, walnuts etc. [39].

Unoccupied LULC classes, such as open and barren land, record a reduction in both periods,
indicating that the increased land consumption by the built-up class takes place at their expense.
Open land decreased by 46.3% (T1) and 42.1% (T2) whereas barren land decreased by 72.8% (T1) and
38.2% (T2). With respect to CA another important class is wetland, which increased by 26.6% in T1

followed by a decrease of 32.2% in T2, mostly resulting from climatic and seasonal variations.

Table 2. Accuracy assessment (producer’s and user’s accuracy in %), overall accuracy (in %) and kappa
coefficient computed using bootstrapping method (100 iterations).

Land Use Class
1999 2009 2017

Producer User Producer User Producer User

Built-up dense 100 100 100 100 94 83
Built-up sparse 87 81 98 89 87 92

Fallow 90 71 88 81 89 83
Agriculture 82 89 90 94 93 94

Forest 78 92 89 91 84 93
Hilly vegetation 93 95 97 95 97 87

Open land 100 47 86 50 73 100
Bare mountain 91 74 88 85 75 57

Barren 62 84 57 91 28 100
Marshy vegetation 93 93 85 82 82 100

Wetland 79 100 100 83 70 82
Sand 100 100 100 100 69 64
River 100 100 82 83 100 76
Cloud 100 100 93 100 100 86

Overall accuracy 85 90 87
Kappa coefficient 0.82 0.88 0.84
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3.2. Analysis of Spatial Urbanization Processes

3.2.1. Quantification of Expansion Rate and Intensity

Uer and Uei values were computed at the ward level to measure the spatiotemporal variation
observed in the conversion rate and intensity of non-built up to built-up areas in T1 and T2 annually.
Overall, in 69 wards of the city Uer is observed to be higher in T2 with an average value of 2.8% as
compared to 2.2% in T1. Different wards of the city have considerable variation in the Uer, ranging
from 0% to 14% in T1 and 0 to 11.1% in T2. In T1, the highest Uer is observed in most of the wards
situated along the fringes. Notably, the highest Uer is found in the wards Khonmoh (14%), Pantha
Chowk (8.9%) (south-eastern fringe), Bemina West (8.1%) and Lawaypora (7.5%) (western fringe),
Alasteng (7.4%) (northern fringe) (Figure 6).
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However, the wards located in the centre of the city experienced least to low Uer. In T2, Uer increased
as compared to T1, and the highest rates are found in northern fringe wards, namely, Zakora (11.1%),
Ahmad Nagar (10.5%), Alasteng (8.6%) and Palapora (8.5%). Central wards, forming the urban core
of the city, show minimal addition of built-up land and point towards urban expansion away from
the core. In comparison to T1, the city also shows increased Uer around to the core. Increased urban
expansion in wards near Dal lake and the northern edge of the river Jhelum is also noticeable. Figure 7a
shows the changes in the category of quantified Uer between T1 and T2.

Conversion of non-built up to built-up land as compared to the available non-built up land in each
ward annually is measured through Uei, which reveals a very intensive urbanization pattern in the city.
Uei is observed to be more intense in T2 (1%) as compared to T1 (0.6%). In T1, conversion intensity is
found to be highest around the fringes on the northern, south-eastern extent and outer limits of the core
city (Figure 8). This highlights both the availability of land as well as a preference to develop areas into
built-up land away from the city core. The least intensive wards are located around Dal lake, acting as
a buffer to urban expansion in other parts of the city. In T2, all wards of the city experienced rapid
urbanization. Figure 8 also highlights the increased intensity around northern, north-western and
western wards. Similarly, wards encircling the city core also experience rapid conversion of non-built
up land. Unlike in T1, wards around Dal lake also come under the ‘High’ and ‘Very High’ categories.
Thus, urban expansion pressure extends closer to the wetland in T2 with possible implications for the
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ecosystem and its services. Category-wise analysis of the Uei, reveals that the number of wards in the
‘Very high’ category increased from a mere 5 in T1 to 16 in T2 i.e., >1.5% increase (Figure 7b), while the
number of wards in the ‘Least’ category decreased from 19 in T1 to 10 in T2.
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3.2.2. Spatiotemporal Trends in Landscape Metrics

The spatial variations in selected landscape metrics at three points in time were analysed to
understand the effect of urban growth on landscape pattern such as irregularity, heterogeneity,
aggregation and composition. Inner differentiation at city level (which depends on the size and spread
of the city) was considered as a benchmark for selecting appropriate cell size. We observed that the
selected cell sizes of 2000 × 2000 m and 1000 × 1000 m (see supplementary Figures S1 and S2) are
non-specific and mismatched to the scale of urban growth in the region. At such coarse cell-size the
urban area appears generalized and homogeneous. However, 500 × 500 m cell size provided more
clarity and helped in identifying differentiation at city level while also capturing areas undergoing
changes, such as urban fringes and upcoming urban centres in the region. Figures 9–12 show the
variation of landscape metrics using the resulting thematic maps at 500 m cell size. LPI, denoting the
dominance of urban patch as compared to the selected cell area, occupies a smaller and discontinuous
area in the centre of Srinagar city in 1999 (Figure 9). In comparison, the years 2009 and 2017 show
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an expansion of LPI in all directions from city centre, especially in the north, leading to the integration
of distant urban areas with the urban core. LSI variation reveals increased irregularity in the shape
of built-up areas away from the city core. In 1999, we found the highest LSI mainly in southern and
western parts of the city. Outside the city limits, the highest LSI is observed in north-western and
south-eastern parts. Our observation indicates early signs of disaggregated growth away from the city.
In 2009 and 2017, the highest irregularity in shape is concentrated in southern and south-eastern parts
of the city, including regions outside the boundary (Figure 10). Our analysis of LSI also highlights
that in many areas within the city limits, increased LSI is succeeded by regions of high LPI value in
the following study year. AWMPFD indicates the complexity of the built-up area by considering the
perimeter-area ratio. Higher values are found to be more randomly distributed in 1999 as compared
to the following years. With continuous urban growth, the city region shows higher patch shape
complexity over time and thus increased fragmentation. But in 2009 and 2007, AWMPFD values
increased radially away from the city centre specifying areas of the city where built-up area increased
in a haphazard manner as the urban core becomes saturated (Figure 11). In comparison to the city,
primarily agricultural land in the south and south-eastern region outside the city also shows increased
complexity over the years, although less than in the city. AI is an important metrics determining the
frequency with which the adjacent matrix of the same class appears side by side. The patterns reveal
that built-up areas aggregated predominantly in the city region, with a major increase in the western
and northern parts, leading to a larger continuous urban area in 2017. Outside the city boundary, AI is
randomly distributed and indicates fragmented growth of urban settlements (Figure 12).

Other commonly used single-value landscape metrics allow easy comparison to other studies that
lack details on spatial variations. NP is found to be the highest (12,628) in 1999, after which it decreases
in 2009 (9883) and 2017 (9868). ENNMN shows the lowest value in 2017 (100.83) as compared to 2009
(103.33) and 1999 (103.58), highlighting the reduced edge-to-edge distance between the nearest urban
patches. PD is highest in 1999 (6.69) as compared to 2009 (5.24) and 2017 (5.23).
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3.2.3. Cluster Analysis of Landscape Structure

To identify the areas that underwent the most significant changes of landscape metrics,
spatio-autocorrelation was employed at a cell size of 500 m. Supplementary Figures S3 and S4 highlight
the generalized patterns of spatial clustering at 2000 m and 1000 m and affirm the non-suitability of
these scales to capture the changes in landscape metrics. Figures S3 and S4 prove no added value of
such aggregated spatial scales for urban planning. This is also established by the lack of any significant
LSI clusters and inability to identify smaller clusters in other metrics at both scales. Figure 13 illustrates
the maps of LISA highlighting the spatial clusters of landscape metrics at 500 m scale along with values
of global Moran’s I coefficients.

A strong spatial dependence of landscape patterns is visible in terms of values greater than
0.40 of global Moran’s I coefficients. Hotspots of landscape metrics are clearly identifiable through
LISA. This result shows clustering in regions with similar landscape metrics values as the adjacent
cell. This similarity in the values demonstrate the footprint of the anthropogenic development in
the landscape as a result of expansion of the built-up area. Hotspots of LSI and AWMPFD appear in
regions further away from the urban core, especially in the north and in isolated areas of the south
and south-west of the city. Apart from the urban core, LPI and AI hotspots spread out across the
region indicate the development of smaller urban sub-centers, which are utilizing local conditions for
an easier expansion into the agricultural region. They could be signs of early urban sprawl. Figure 13
shows the spatial pattern of landscape metrics clustering as a result of similar values in adjacent cells
for each year. In contrast, Figure 14 shows the clustering of cells where values of landscape metrics
changed most significantly in adjacent cells between two points in time, for example from low value
to high value represented by high-high clusters. In CA, other landscape metrics (except LPI) have
a clustering of high-high values in a given year (Figure 13) but do not show a drastic increase between
years (Figure 14) as compared to areas in OZ. High-high mapped areas, mostly in the OZ (primarily
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peri-urban areas), experience increased heterogeneity, for example, due to the relative increase in their
shape complexity from a low value to a high value. However, changes in LPI are specifically bound to
CA as the largest patch is in the city, and most significant changes are only possible in and around it.
Between T1 and T2, LPI has shifted from south-east to the northern part of the city. This analytical step
indicates the development of fragmented growth outside the CA and is an early sign of urban sprawl.
But, low global Moran’s I values indicate such clustering can be a result of random spatial processes.Remote Sens. 2020, 12, x FOR PEER REVIEW 21 of 33 
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3.2.4. Spatiotemporal Distribution of Growth Types

Figure 15 shows the distribution of different growth types, primarily depicting the dominance of
the edge-expansion type in both T1 and T2. In T1, the proportion of edge-expansion type in the study
area (OZ + CA) was 65.8% of the total increase in built-up area, followed by outlying (22.7%) and
infilling (11.4%) type growth. As a dominant growth type, edge-expansion is scattered throughout
the study area, adding to the previously existing patches mainly in OZ. More prominently, CA shows
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expansion around old urban patches (defined as the existing built-up area in the previous year) on
western and south-eastern fringes of the city. The area adjoining transportation networks links the
city with regions outside the administrative boundary and is also characterized by this growth type.
The outlying type of growth is mainly found outside the CA, predominantly on the western side,
showing signs of urban expansion into agricultural fields. However, the percentage of growth type
within CA shows a shift in trend with respect to infilling and outlying growth types. Infilling is observed
to be more dominant within CA i.e., 21.4% as compared to 11.6% of outlying, while edge-expansion
(67%) remains the dominant growth type. The densification of the urban core by way of infilling is
observed mainly on the western edge of the pre-existing urban core, where more housing colonies are
constructed and have become densified. The presence of Dal lake on the eastern side has prompted
this growth on the western edge, as the initial urban core is densified and unable to accommodate any
additional build-up area.Remote Sens. 2020, 12, x FOR PEER REVIEW 25 of 33 
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In T2, edge-expansion (65%) remained the dominant growth type followed by outlying (19.2%)
and infilling (15.80%) (OZ + CA). However, CA shows a decreasing trend of edge-expansion type
(59.7%) while infilling type increased (29.7%). This indicates a densification of existing patches, i.e.,
the development of unoccupied land within the built-up area while the entire city region continues to
grow outwards, connected to existing urban patches. Spatial association can be observed between
edge-expansion and infilling types, with infilling dominating (in T2) around the region occupied
by edge-expansion (in T1). Major areas experiencing infilling growth are concentrated around the
northern extent of the city and the periphery of the urban core. In contrast, the outlying growth type
(10.6%) remained a small proportion of overall growth, mainly scattered around northern fringes of
the city dominated by agricultural land. Over the two time periods illustrated above, the infilling
type is observed to increase within the CA. This growth type is observed to be concentrated in and
around the urban core in T1, while in T2 it is dispersed outside the core area. This result indicates the
saturation of the urban core and a tendency to densify new areas. Diachronic analysis indicates that
the edge-expansion type plays a major role in the expansion of the city outside the urban core.

4. Discussion

4.1. Spatiotemporal Evolution of the Urban Landscape

This study offers a detailed account of urbanization in the largest urban settlement in the
Himalaya, providing a gauge to compare urban growth in cities located across different mountain
valleys. Evidence from Himalaya suggest an increasing urbanization extent [38,54] along with potential
landscape ecological risk from the coupled effects of growth [53]. A major attempt at understanding
the urban growth in Himalayan cities was made by Diksha and Kumar [54], analysing their urban
sprawl and land consumption pattern. All the capital cities in Himalaya, namely, Srinagar (India),
Dehradun (India), Shimla (India), Kathmandu (Nepal), Gangtok (India), Thimpu (Bhutan) and Itanagar
(India) were reported to exhibit different growing patterns in terms of densification and dispersion,
also highlighting the unplanned and haphazard nature of growth across all mountain and valley
cities. One of the similar sized cities in Himalaya is Kathmandu, capital of Nepal, which also reported
a complex urbanization pattern comprising scattered growth in some urban areas and densification in
others [55], determined through the spatial metrics analysis of this city (increased LPI and decreased
ENNMN). However, a lack of detailed studies of urban landscape characteristics in India, and more
specifically in other Himalayan cities, forms a major barrier in assessing and comparing these patterns.
Further analysis is limited in most studies, as they only provide single landscape metric values for the
city, and spatial differentiation is not available. As compared to the other capital cities in Himalaya,
Srinagar is observed to have the highest land consumption rate (from 1991–2015) but dispersed growth
with less density [54]. Our results also indicate a similar trend of increased rate and intensity in
land conversion as well as providing more far-reaching insights by specifying regions experiencing
increased irregularity and scattered growth. This was done by providing spatial patterns of landscape
metrics and growth type. Other studies on Srinagar have largely provided long-term general patterns
of urbanization based on LULC analysis and change detection [38,39,56]. Ward-wise built-up growth
points towards significant addition in south and south-eastern wards, validating the increased rate
and intensity in the change of the built-up area [56].

However, urban growth in the Srinagar region differs from many of the urban regions in terms
of its dominant growth type. Unlike areas assessed in other studies around the world, where the
dominant growth type has either differed over time [31,45], including domination by the infilling type
of growth [57] or a declining trend in infilling type [45,58], Srinagar (CA and OZ) shows the least
contribution of the infilling growth type, although it is increasing gradually, while edge-expansion
remained the most dominant type throughout. This indicates a deviating growth trajectory in
Himalaya and a need for differential land-use and urban planning strategies not imitated from the
non-mountainous regions. Detailed analysis of different measures of urbanization in Srinagar confirms
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an intensifying growth in and around the urban core while fringes of the city also experience expansion
in different directions over time. Our results highlight an increased irregularity and complexity at
regional scale, while at city level the urban core experiences an increase in urban patch leading to
homogeneity. The city and its surrounding region follow a monocentric urbanization pattern in the
absence of any secondary growth points and a continued absorption into the initial urban core. This is
also highlighted by an increased LPI in conjunction with an increase in AI values (in 2009 and 2017).
Lower values of LSI and AWMPFD values in the urban core indicate a more homogenous pattern
of built-up areas. In addition to the densification of the urban core, Srinagar city also experienced
a parallel expansion and rapid densification in different parts of the city. However, growth in other
parts was marked with increased LSI and AWMPFD, highlighting the increasing irregularity and
complexity in patterns of urban growth outward from the urban core.

Considering the urban growth theory proposed by Dietzel et al., (2005) [32] developmental phases
of the city are observed to oscillate between two phases, diffusion and coalescence, each following
a harmonic pattern [36]. In the case of Srinagar, we could affirm that the city experienced a partial
diffusion stage dominated by edge-expansion in T1, while in T2 a decrease in edge-expansion and
increase in infilling growth type indicates a transition stage of the ‘wave pattern of urban growth’ which
is approaching a coalescence phase. The transition between these stages can also be understood by the
gradual changes in other commonly used landscape metrics. In Srinagar, NP is found to be decreasing
over the years, indicating an aggregation of urban patches over time. ENNMN shows the lowest value
in 2017 as compared to 2009 and 1999, thus highlighting coalescence in later years. High PD in 1999 as
compared to 2009 and 2017 also point to the existence of a partial diffusion phase in 1999 followed
by coalescence in 2009 and 2017 [37]. However, some studies have reported defined growth phases
in selected cities on the basis of single-value landscape metrics [33] or growth types [59]. Anees et
al. [33] concluded the existence of well-defined diffusion–aggregation phases in the medium-sized city
of Kurukshetra, India. Kantakumar et al. in the study of Pune, India, [59] reported the existence of
multiple expansion patterns: coalescence in the urban core and diffusion in the suburbs, that is, a trend
towards a polynucleate city. An interesting analysis of 12 Indian cities conducted by Taubenböck et
al. [60] derived similarities in the spatial urbanization of different groups of cities, based on landscape
metrics among other urbanization indicators. Although all cities belonged to larger population size
(>2.5 million), the results from this study point towards a trend wherein a ‘group of cities’ (for example
‘incipient mega cities’ with 5–7 million population) showed signs of urbanization, as was detected in
early stages of the next larger group (‘mega cities’ with >10 million population). Similarly, our analysis
of Srinagar (1.1 million) is observed to reveal early characteristics of incipient megacities, such as
‘complex urban sprawl in the periphery and densification in the urban core’, but it is still undergoing
a transition phase. However, such interpretations should be carefully made, as although aspects of
spatial evolution proceed similarly or can be predicted to be similar, detailed analysis of parameters
reveal different possible growth patterns. Thus, the growth of Srinagar points toward ill-defined
phases which approximate the general ‘diffusion-coalescence’ dichotomy but do not fit it perfectly.
Lack of perfect accordance with the theory through deviation from an exact oscillation phase may
be due to one of several reported reasons: (i) difference in temporal period, (ii) difference in spatial
scale, (iii) possible effects of decade-long conflicts in the Srinagar region from the 1990s. Thus, utilizing
landscape metrics along with growth type information, it is possible to understand the growth of the
city as a continuum of diffusion and coalescence. This, rather than a dichotomy of these processes,
better represents real-world systems [34,48,61].

4.2. Role of Topography, Land-Use Policies, and Recommendations for Spatial Planning

Considering the location of Srinagar on the foothills of the Himalaya, topography plays
an important role in shaping the evolution of this city. The presence of mountain chains to the
east and south-east of the city has influenced the direction of urban growth. The eastern boundary of
the city next to mountains, shows spatially discontinuous growth, with rate and intensity of built-up
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change ranging mostly from the low to medium category. However, the growth of industrial estates
such as Khunmoh (largest industrial area in Srinagar) in the south eastern part of the city, which forms
a tail-like structure along the mountains, is an exception to this. The extraction of lime stone for
cement production and of quarry stone for the construction of raw material also plays a prominent
role in LULC changes along the foothills in this particular area. A general trend of Srinagar’s built-up
area expansion to the west coupled with landscape metric values around areas in proximity to the
foothills and further constricted by the river Jhelum (in the south-eastern part) points toward increased
irregularity and fragmentation. Agricultural land in OZ, west of the foothills, shows a consistent
increase in the fragmented built-up area. Thus, topography has put added pressure on specific parts of
the urban settlement in the foothills and increased urban expansion into fertile agricultural land in
some parts. This phenomenon is also observed through the LISA patterns (Figure 14). They show the
most drastic changes in landscape metrics (except LPI) between two points in time being experienced
in OZ areas, thus indicating urban sprawl, which changes from simpler shapes to relatively complex
shapes between two time points in time.

Weaker policy implementation to protect agricultural land, affordable land prices and greater value
returns from urban land along with specific geographic locations are all factors that have traditionally
encouraged expansion of the urban footprint into rural agrarian land. The Jammu and Kashmir ‘Land
Revenue Act, 1939’ and ‘Agrarian Reforms Act, 1976’ restrict the conversion of agricultural land,
but allow land of up to 2 Kanals (0.0005 km2) to be converted without permission, except for some
specific crops. As of 2016, lack of a housing policy for rural areas outside the city region has prompted
authorities to rely on recommendations from local authorities on a case-by-case manner. LULC results
revealed a decrease of 27.5% in agricultural land during T2, up from 7.8% in T1, while the spatial
distribution of AI (Figure 12) indicates the aggregation of urban regions in areas previously dominated
by agriculture. Special provisions controlling the utilization of non-urbanized land are required which
consider the agrarian value of the landscape along with the nature of growth type in the nearby
area. The acceleration of urban growth on the north-eastern extent of the city is mostly concentrated
around the Srinagar–Leh highway, where expansion was dominated by edge-expansion and infilling
growth. The strengthening of the ‘Prevention of Ribbon Development Act, 2007’, which regulates the
construction of buildings alongside public roads, is of utmost importance in containing the budding
sprawl pattern. A review of the ‘Master Plan 2000–2021’ also shows growth in the north-eastern
extents and underdevelopment of the proposed areas in the north-west and south-east of the city due
to ineffective land-use policy. This expansion is further constricted by the presence of two wetlands,
Dal (on the eastern side) and Anchar (on the western side). However, water bodies are also known to
attract human settlements in view of their ecosystem services [62].

To strengthen urban planning measures in India, local municipal bodies which are the closest
structures of government to citizens have been granted special provisions in an attempt to decentralize
urban governance and provide greater autonomy through the 74th Constitutional Amendment Act.
Under this Act, urban local bodies hold the primary responsibility for urban planning and assuring
short-term and long-term infrastructural services to citizens. However, many of the cities in India
grapple with implementing urban planning measures in a timely and resource-efficient way [23,59,63].
Our results contribute in this regard by providing important information for implementing planning
regulation through different proxy measures of urbanization, such as rate, intensity, landscape structure
and growth type of the built-up change. In our study, the availability of numerical indices provides
a simpler and quantifiable decision-making process, saving valuable time and resources when testing
different planning scenarios. As one of the basic steps, municipal bodies should utilize the ward-level
data on built-up change rate and intensity to identify specific wards that are facing the highest
urbanization pressure. An evaluation of the quality of public services in these wards should be
carried out to identify the gaps and to design relevant measures in tune with the LULC information.
This can provide a readily comprehensible spatial viewpoint to planning efforts. Based on such
information, decision making on resources like roads, water connections, and availability of open,
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green and blue spaces can be streamlined and incorporated into the long-term plans of the ward.
At the city level, management plans should be revised to incorporate a detailed study for the urban
landscape structure, including spatial differentiation of landscape metrics in the city. Such spatial
information should be utilized to identify the area experiencing irregular and fragmented urban growth.
Analysing areas that show such temporally consistent trends would be helpful in enforcing building
by-laws and the provisions of the master plan, which restricts haphazard growth within the city
limits, especially in the urban fringes. Information from landscape metrics like LPI and AI should be
utilized to understand the densification trend of the city and to achieve a sustainable balance between
compaction and sprawl. Thus, quantitative measures of the complex landscapes can serve as criteria
for assisting the decision-making process [60,64]. At a regional level, we recommend synchronizing
the type of infrastructural development with the identified growth phase of the city, which also affects
the rural characteristics in the region. Prior knowledge of the growth phase, such as coalescence,
should be used to develop a transport infrastructure which supports infill development and promotes
densification. Various types of roads have a major role in influencing urban landscape composition
and configuration [25]. At the same time, limiting the conversion of open land to built-up during the
coalescence phase can allow the development of green spaces, providing valuable ecosystem services.
Promoting infilling development in the urban areas experiencing edge-expansion and outlying growth,
symbolizing the diffusion phase, would help in conserving resources and reduce land fragmentation,
thus preserving more ecologically valuable lands. A combination of landscape metrics and various
growth types can be used to identify agricultural land around the city that is most vulnerable to
land conversion. Furthermore, to strengthen spatial planning initiatives, spatio-autocorrelation
must be employed to identify hotspots of change, as they provide direct interpretable results from
landscape metrics.

4.3. Methodological Improvements and Limitations

Within urban regions, intra-level landscape diversity and local differences can also contribute
to spatial planning and management [65]. The majority of the studies analysing landscape structure
focus on a single-value metric for the city and utilize it for interpretations of landscape characteristics
and/or phases of urban growth. In this study, one of the key innovative methodologies used is spatial
differentiation of landscape metrics, which is achieved by using grids of different sizes. For this,
identification of appropriate cell size is critical, as urban regions undergo rapid change compared to
other land-use forms and are thus expected to create greater localized differences in the landscape.
Other regional studies involving a larger urban region with multiple cities [18,25] have adopted 5 km
and 10 km as the scale of analysis for landscape metrics. By testing intermediate cell sizes of 500 m,
1000 m and 2000 m, we were able to identify the appropriate scale, i.e., 500 m, capable of reflecting
diversity in composition and configuration in a region sized approximately 2000 km2. However,
the accuracy of the results is limited by the medium resolution of remote-sensing data and can be
further improved by utilizing high-resolution data. Uncertainty and errors are also expected from
various algorithms of image classification, so that future research can fruitfully explore the possibility
of testing multiple algorithms and classification techniques. Considering a broader time scale for
analysis will also provide clearer trends of urban growth over time. As temporally limited studies are
less efficient in observing the exact oscillating urban growth pattern, a wider temporal scale analysis of
urban dynamics would bring more clarity to the growth phase debate.

5. Conclusions

An integrated multi-scale approach utilizing remote-sensing and GIS tools was implemented in
this study to gain a spatially explicit understanding of urban dynamics in and around Srinagar city
from 1999 to 2017. Globally, many studies have contributed to our understanding of spatiotemporal
patterns of urban growth. However, spatial differences within computed landscape metrics are rarely
addressed, and thus their contribution in urban planning is limited. In this study, we utilized satellite
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data to delineate (i) measures indicating urban growth of the city and its environs, (ii) urban growth
patterns and processes at different spatiotemporal scales and (iii) the typology of urban growth in
different parts of the city. Based on our results and their analysis, we conclude the following:

1. Srinagar has experienced considerable urban growth at the expense of fertile agricultural land,
forest and open land. In the absence of any major urban centre nearby, Srinagar city has
accommodated most of the growth in the region, while outside the city boundary expansion was
observed mainly in the south and south-eastern region. Within the city, the rate and intensity of
different built-up areas in wards highlight spatial variation in two time periods. Identification of
specific wards undergoing rapid changes in the city is an important step towards implementing
urban planning measures and resolving the reduction in open and green spaces.

2. The analysis of landscape metrics based on spatial differentiation helps in deducing the inner
urban structural pattern of the city. At the selected 500 m cell size, areas were identified
experiencing irregular, fragmented and compact growth. An integrated approach to quantifying
urban expansion by means of landscape metrics and further identification of hotspots using
spatial autocorrelation is highly efficient and feasible, providing scientific criteria to prioritize
areas that require appropriate policy implementation.

3. In terms of urban growth typology, Srinagar city is dominated by the edge-expansion growth
type, then followed by the infilling and outlying types. In association with landscape metrics
results, the urban development trajectory of Srinagar points towards a mixed phase of different
growth processes. Over the span of almost three decades, the city experienced a domination of
diffusion in the initial year of investigation, followed by the dominance of a coalescence phase.
Increased irregularity and fragmentation beyond the urban core, and increased aggregation and
homogeneity within the core highlight the continuum of diffusion-coalescence even within the
prevalent phase mentioned.
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